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Abstract

The advancement of deep learning techniques in both
image and text processing has allowed for the creation of
multi-modal models that make predictions using multiple
forms of data. Seeing as the field of medicine contains a
lot of image data and text data, it makes perfect sense to
apply multi-modal models in this field with the hopes of im-
proving model performance and results. However, it is not
Jjust results that matter, we need to be able to understand the
reasoning behind these models’ decisions in order to im-
prove clinical trust and mass adoption. This project aims to
tackle both these problems at once by applying multi-modal
models for biomedical diagnosis of chest-related diseases
from the MIMIC-CXR dataset containing chest images and
radiology reports. Additionally, model interpretability is a
main focus of this project as we will use techniques like
Grad-CAM and SHAP values to identify influential features
of the images and text that ultimately contribute to a deci-
sion. Through comparing unimodal models and their per-
formance with a multimodal model’s performance, we can
see that the additional information provided through an-
other medium allows for the multimodal model to perform
better on the same classification task. Additionally, analyz-
ing our Grad-CAM heatmap on images and SHAP values
on radiology reports gives us a useful glimpse into why the
model is making the decision that it is. With this project,
I aim to demonstrate that interpretable multi-modal mod-
els not only improve diagnostic accuracy but can also be
confidently interpreted to enhance the transparency and re-
liability of Al systems in clinical situations.

1. Introduction

The field of medical diagnosis has long relied on expert
interpretation of both images and texts but current Al solu-
tions aiming to tackle medical diagnoses only focus on us-
ing mainly images. These models have demonstrated great
performance using only one stream of data but what would
happen if we introduced additional data modalities to make

it more life-like? Another problem with current models is
the black box nature of them - we provide a medical image
and it outputs a prediction instantly. In order to popularize
the acceptance of Al diagnosis tools, models also need to
be interpretable, there needs to be explanations and reason-
ing behind decisions made. Espeically with multiple data
modalities being presented to a multi-modal model, this in-
terpretability is more important than ever. This project aims
to explore the performance of multi-modal models and in-
terpret them. This will be done with the development of
a multi-modal deep learning model that processes chest X-
ray images and their associated radiology reports from the
MIMIC-CXR dataset to make predictions of thoracic dis-
ease labels. To do this, our inputs will be images of chest
radiographs along with the corresponding radiology report
of the image(s). This input is passed into our multimodal
model that extracts the features from the images and radi-
ology report to output a multi-label classification vector in-
dicating the presence or absence of 14 thoracic problems.
This model aims to do two things. The first being how
it compares to unimodal models, which will be found by
comparing its performance with models trained on just the
images or the texts. Model performance will be determined
using the standard metrics of loss and accuracy. The second
thing is what methods are the best to interpret these mod-
els. To do this, we will experiment with methods such as
Grad-CAM for images and SHAP values for text to deter-
mine if their outputs provide any sensible explanations for
why certain decisions were made by the model.

1.1. Literature Review

To understand more about multi-modal models, we can
look at the article titled ”A Survey on Deep Multimodal
Learning for Computer Vision: Advances, Trends, Appli-
cations, and Datasets” by Khaled Bayoudh, which goes
over different architecture types, application areas, and
present challenges [2]. Deep multi-model models are cat-
egorized into early fusion, late fusion, and hybrid fusion
models. Since we’re working with different modalities of
data, which usually require different models to examine



them, we need to combine the things we learn at some point
in the model, which is what fusion refers to. Early fusion
combines raw features from different modalities at the in-
put level, late fusion combines separate predictions from
unimodal models at the decision level, and hybrid fusion
fuses data at multiple levels. However, just like all mod-
els, these still come with challenges. The main challenge is
the difficulties of working with different data types. These
include things like difficulties combining different dimen-
sional data, as well as temporal and semantic alignment be-
tween different modalities. In addition to these problems,
there is an area of research focused on interpreting the rea-
soning of multi-modal models, which makes them a black-
box still. There is also the problem of scalability, as training
and inference on large multi-modal datasets require a lot of
computational resources. This article provides us with in-
formation necessary to structure and deploy a multi-modal
model, as well as explains the interpretability problem and
why it is important to work on it.

To better understand our dataset, let’s look at an article
that has used the dataset to perform a multilabel classifi-
cation. In the article “NLP-Powered Healthcare Insights:
A Comparative Analysis for Multi-Labeling Classification
With MIMIC-CXR Dataset” by Ege Erberk Uslu, we see
that the researchers decided to leverage NLP techniques to
classify 14 distinct radiological findings from radiology re-
ports of the MIMIC-CXR dataset [1]. To do this, the au-
thors compared the performance of multiple transformer-
based language models (BERT, BioBERT, ClinicalBERT,
and CXR-BERT) and found that the model using CXR-
BERT-GENERAL with the BERT classifier achieved the
highest weighted F1-score of 0.8047. Even though this arti-
cle only uses a unimodal model, it still gives us a few impor-
tant takeaways. Firstly, this article validates text modality as
a way to perform a multilabel medical diagnosis classifica-
tion task. Secondly, it provides us the the best transformer
model to work with, which is extremely useful when de-
veloping our multi-modal model since we know which text
model works the best with the dataset. In another article,
”Advancements in Chest Radiography Pneumonia Classifi-
cation Through Fine-Tuning Using the MIMIC-CXR-JPG
Dataset” by Yifan Zhang, Zhang uses the MIMIC-CXR
dataset to fine-tune CNNs for the task of pneumonia clas-
sification [7]. The model is a CNN built using the Fas-
tAl library with a Huggingface pretrained backbone and
has a baseline error rate of 0.7688. After fine-tuning with
the MIMIC-CXR dataset, the error rate dropped to 0.3133,
showing the effectiveness of the MIMIC-CXR dataset and
also providing ideas of what architectures to use to ana-
lyze the X-ray images. From these articles and others on
our dataset, we gain valuable insights into preprocessing
techniques, model architectures, and training strategies that
guide the development of a multimodal model built on this

dataset.

Looking at an article that actually uses a multi-modal
model, we can look at “Interpretability-Based Multimodal
Convolutional Neural Networks for Skin Lesion Diagno-
sis” by Sutong Wang [3]. This article explores a multi-
modal deep learning model for skin lesion classification
by combining dermoscopic images with structured clinical
metadata. Their model architecture used a fusion method
that concatenated CNN-based image features with a sim-
ple MLP on structured data before the classification head.
This article also highly emphasizes interpretability as it uses
Grad-CAM for visualizing important regions in the image
and SHAP values for interpreting structured clinical input
features. From this article, it is shown that their model out-
performed unimodal baselines and the interpretation tools
were useful in explaining why a particular prediction was
made, which are both great signs for the use of multi-modal
models. Additionally, this article provides a blueprint for
constructing a multimodal model, specifically the architec-
tural choice of late fusion which is when features are ex-
tracted from the image and text and concatenated before the
MLP with the idea being that late fusion allows the model
to integrate visual and contextual information right before
classification to improve predictive performance and main-
tain interpretability.

From these articles and others attached in our references,
we are able to see how others have tackled this problem be-
fore us whether it was a unimodal model or a multimodal
model. We were able to get an insight into what algo-
rithms/architectures are currently state-of-the-art, such as
pretrained BERT models for text-based classification or dif-
ferent CNN models for image-based classification, and also
clever approaches such as the late fusion method for a mul-
timodal model, as well as Grad-CAM heatmaps and SHAP
values for model interpretability. This project builds upon
the ideas of these articles by leveraging proven unimodal
models, integrating them into a multimodal model, and us-
ing various interpretability methods to make a step in the
right direction in the development of transparent Al systems
for biomedical diagnoses.

2. Dataset

We are using the MIMIC-CXR v2.0.0 dataset along
with the MIMIC-CXR-JPG v2.1.0, which are multimodal
datasets containing 377,000 chest X-ray images along with
associated radiology reports from over 65,000 patients. The
difference between these two datasets is that MIMIC-CXR-
JPG contains preprocessed JPG images while MIMIC-CXR
contains the images in DICOM form, which is less ideal for
machine learning due to its higher difficulty to work with.
This dataset was collected at Beth Israel Deaconess Medi-
cal Center between 2011 and 2016 and is one of the most
popular clinical datasets containing high-resolution images



along with clinical text. For this project, we used a random
subsample of 10850 datapoints with a 70/20/10 split for our
data into the training, validation, and test sets. A single
datapoint in our dataset consisted of a study_id, dicom_id,
image_path, radiology_report, which split it belonged to,
and its labels. Since this project is trying to tackle mul-
tilabel classification, each sample will also have fourteen
associated labels from the CheXpert scheme (atelectasis,
cardiomegaly, consolidation, edema, enlarged cardiomedi-
astinum, fracture, lung lesion, lung opacity, pleural effu-
sion, pleural other, pneumonia, pneumothorax, support de-
vices, and no finding) where 1 indicates the presence of a
label, O indicates the absence of a label, -1 indicates uncer-
tainity about the label, and -2 indicating no mention of the
label. To preprocess the image data, we resized all X-ray
images to 224 x 224 pixels as well as normalized pixel val-
ues to [0, 1] to make it compatible with a CNN. No data
augmentation was done to the images. To preprocess the
text data, we extracted the text from the “Findings” and
“Impression” fields (due to these being the most important
fields), lowercased characters, and removed punctuation as
well as special characters. Below is an example of an unpro-
cessed and preprocessed image and text data that is inputted
into our multimodal model.

Original Chest X-ray Preprocessed Chest X-ray

Figure 1. Image Input

= Original Radiology Report =
" FINAL REPORT
EXAMINATION: CHEST (PORTABLE AP)

INDICATION: year old wonan with pleural effusion, s/p chest tube placenent
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Comparison to

pigrail, Minimal increase in extent of the pre-existing pleural effusion.

The left perihilar nass and the surrounding parencnyma\ opacity uith air
stant. ange ht lung.

__. Unchanged position of the left pleural

ned Radiology Rep
Comparison to . Unchanqed position of the left pleural pigtail, Mininal increase in extent of the pre-existing p
leural effusion. The left perihilar mass and the surrounding parenchymal opacity with air bronchograms is constant.
Unchanged normal appearance of the right lung

Figure 2. Text Input

3. Methods

Reiterating the problem, we want to input image and
text data into a multimodal model to output a vector
containing probabilities for 14 disease labels. To do this,
I first decided to create unimodal baseline models to
provide baseline numbers and also act as building blocks
for our multimodal model. For our text-only model to read

radiology reports, I decided to use a pretrained BiomedVLP
CXR-BERT model, which is a vision language transformer
from Microsoft, designed specifically for chest radiology
and trained on radiology reports of the MIMIC-CXR
dataset. BERT (Bidirectional Encoder Representations
from Transformers) is a deep learning model that utilizes
bidirectional attention to look at all words in a sentence at
once to capture the full context of a text. For classification
tasks, such as classifying a radiology report, BERT adds
a special [CLS] (classification token) to the beginning
of the input text after processing the entire text, which
can be treated as a summary of the entire text and passed
into a classifier. For our project, each radiology report is
tokenized using the BERT tokenizer associated with the
pretrained model to output the CLS token, which is then
passed to a multi-layer perceptron classifier with a final sig-
moid output for each of the 14 diagnostic labels. Since we
are using the model as is and we are not training it, we did
not use a loss function for this text-only model. I decided
on using the BiomedVLP CXR-BERT model since it’s
already pretrained on domain-specific data, which avoids
the need to train a BERT model from scratch, and it also
outperforms general-domain BERTS on radiology-specific
tasks. For our image-only model to analyze chest X-ray
images, I decided to fine-tune a ResNet-18 CNN, which is
a well-established CNN that uses residual connections to
enable stable training of deeper models and is pretrained on
ImageNet. This model contains 1 input convolutional layer,
4 residual blocks which each contains 2 convolutional
layers, and 1 fully connected output layer. Additionally, we
made other modifications to the model such as adjusting
the input layer to just take in grayscale images as well
as modifying the classifier head to be compatible with
our task. To do this, we modified the first convolutional
layer by changing "Conv2d(3, 64, kernel size=7, stride=2,
padding=3)" to "Conv2d(l, 64, kernel_size=7, stride=2,
padding=3)" which allows the model to directly process
grayscale inputs without channel duplication. For the clas-
sifier head, we replaced the original fully connected layer,
which had 1000 logits, with a custom fully connected layer
that extracted the 512-dimensional image feature vector
and projected it to 14 outputs using a linear layer followed
by a sigmoid activation to get our probabilities for each
label. Because this is a multi-label classification problem,
we apply binary cross-entropy loss independently to each
label as our loss function. This model is then fine-tuned
by training on our dataset using an Adam optimizer, where
layers up to and including layer 2 are frozen so we just train
layer 3, layer 4, and the final classification head.

After these unimodal models were complete, I moved on
to creating the multimodal model. For the model to take in
both imaging data and textual information, I planned to use
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Figure 3. Binary Cross—Entropy Loss Equation

the two unimodal models as building blocks and combine
them to form our multimodal model. The fusion method
that I decided to go with was the late fusion paradigm,
where each modality is processed independently by its own
encoder, and the learned representations are then fused at
the decision level. From our image encoder, we can see that
the fine-tuned ResNet-18 model yields a 512-dimensional
feature vector, and our text encoder, the pretrained Biomed-
VLP CXR_BERT, outputs a 768-dimensional feature vector,
which when concatenated gives us a 1280-dimensional fea-
ture vector. This feature vector retains the modality-specific
features, which are then input into a 2-layer feedforward
network to output the final 14 sigmoid-activated predictions
for our multi-label classification task. This model also uses
the binary cross-entropy loss that is used in the unimodal
image model to allow for comparability between unimodal
and multimodal results. This model was then trained using
the Adam optimizer under similar conditions to the ResNet-
18 model, except no layers were frozen. Late fusion was
chosen because of its modular design, allowing for the reuse
of pretrained models and easy use of interpretability meth-
ods on each individual encoder, and also because it requires
minimal preprocessing compared to early or joint fusion
methods, which may require aligning modalities in space.

After building our multimodal model, we now want to
interpret it. To do this, we use Grad-CAM (Gradient-
weighted Class Activation mapping) on image interpretabil-
ity and SHAP values for text interpretability. The high-level
way Grad-CAM works is by highlighting the spatial regions
that the model ”looks at” when predicting a particular con-
dition. Going deeper, we calculate how important each fil-
ter in the last convolutional layer is for the class we’re in-
terested in. This is done by looking at the gradient output
score with respect to that filter’s activation map and aver-
aging it over the whole spatial area. Then, each filter’s ac-
tivation map is weighted by its importance and added al-
together, which creates a single map that shows where the
model was looking to make its decision. The ReLLU func-
tion is then applied to keep only the parts that positively
contribute to the prediction, since we want to know what
spatial regions support the model’s decision. This map is
then resized to match the original image size and overlaid
as a heatmap on top of the image to provide a visual ex-
planation of where the model focused its attention for that
specific prediction. The high-level way SHAP values work
is by assigning each word of a text a Shapley value to in-
dicate its contribution to the model’s prediction. Going
deeper, SHAP determines this by masking each word and

observing how the model’s prediction changes. If remov-
ing a word significantly changes the prediction, the word is
likely to be important. SHAP also evaluates many differ-
ent permutations of words to see how the model behaves,
since the impact of the word can also depend on the con-
text. Therefore, for each word, SHAP calculates an average
effect on the prediction across these permutations, which is
our SHAP value. This value tells us how much that spe-
cific word contributed to the final prediction positively or
negatively. This is then used to generate color-coded visu-
alizations where red words are associated with pushing the
model towards the prediction and blue words are associated
with pushing it away the prediction.
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4. Results

As mentioned above, we trained three models, the
ResNet-18 CNN (image-only model), a BiomedVLP CXR-
BERT (text-only model), and the late fusion multimodal
model. These models were all trained on our 10850 data-
points which included grayscale X-ray images, their corre-
sponding radiology reports, and the labels for the 14 chest
conditions. As mentioned in our methods, the BiomedVLP
CXR-BERT model was pretrained and used as is so there
weren’t any hyperparameters associated with it or any train-
ing involved. For our CNN model and multimodal model,
it was trained using the AdamW optimizer which decouples
weight decay from the gradient update step which improves
generalization compared to the standard Adam optimizer.
For our learning rates, we chose to use a learning rate of 1
* 10e-5 since it allowed for stable and efficient training and
led the model to convergence consistently. For our batch
size, we went with a batch size of 32 to balance speed and
GPU constraints. Both models were trained for 10 epochs
since anything more or less led to undertraining and overfit-
ting respectively. Both models also used a dropout of 0.5 to
reduce overfitting in the models.

For our evaluation metrics, we mainly used accuracy
and loss to evaluate model performance. However, we

()]



used a custom formula for accuracy and loss as we
chose to ignore missing labels, which we filled with
-2. Firstly, we computed the binary cross-entropy loss
only on valid labels, ignoring labels with -2. This way,
the model is not penalized for predictions on missing labels.

def masked_bce_loss (preds, targets, ignore_val=-2):

mask = (targets != ignore_val).float ()
targets_clamped = torch.clamp(targets, 0, 1)
loss = F.binary_cross_entropy (preds, \
targets_clamped, reduction=’'none’)

masked_loss = (loss % mask).sum() / mask.sum()

return masked_loss

We also modified the accuracy function to compute the
mean per-label accuracy for a multilabel classification task
while excluding labels with -2. Additionally, since the
models are outputing probabilties, we consider a prediction
for a label to be correct if the sigmoid output exceeds a
treshold of 0.5 and matches the ground truth labels.

def masked_accuracy (preds, targets, ignore_val=-2,\

threshold=0.5) :

mask = targets != ignore_val
preds_bin = (preds > threshold).float ()
accs = []

for i in range(targets.shape[l]):

col_mask = mask[:, 1]
if col_mask.sum() < 2:
continue

acc = accuracy_score (targets[col_mask, 1i]\

.cpu(), preds_bin[col_mask, i].cpu())
accs.append (acc)

return float (np.mean(accs)) if accs else 0.0

Using these evaluation metrics, we can see that our fine-
tuned ResNet-18 model acheived a training loss of 0.2877
and a training accuracy of 0.7648 along with a validation
loss of 0.4436 and a validation accuracy of 0.7047. Our
multimodal model achieved a training loss of 0.1302 and a
training accuracy of 0.8296 along with a validation loss of
0.2707 and a validation accuracy of 0.7916. On the test set,
our multimodal model acheieved a test loss of 0.2592 and a
test accuracy of 0.7950. From this, we can see that our mul-
timodal model had a 10% better performance than the uni-
modal model suggesting multimodal models and data allow
for better performance than unimodal models and data. We
measured accuracy differently for our pretrained Biomed-
VLP CXR-BERT as we computed the per-label accuracy
by comparing predicted and ground truth binary labels for
each disease label rather than the entire vector of labels as
we did with the CNN and mutlimodal model.

In addition to just models, we utilized interpretability
methods of Grad-CAM and SHAP values to see if they
would provide any useful information on decisions that the
models made. For Grad-CAM, we only created heatmaps
for the top-3 highest scoring labels and their predicted prob-
abilties since creating 14 for each image would be too much.

In an image that we look at, we can see that our code outputs
an X-ray image along with the three Grad-CAM heatmaps
for the top three labels (no finding, cardiomegaly, and at-
electasis). In these images, the attention is focused on the
central thoracic cavity which aligns well with clinically rel-
evant regions for the conditions of the labels. This visu-
alization shows that the model is not only accurate but also
provides interpretable reasoning for why it is making the de-
cisions that it does. For the SHAP values, we the same ap-
proach of only calculating SHAP values for the top-3 high-
est scoring labels. The output of the SHAP values are visu-
alized with a color-coded attribution map where red tokens
are tokens that push the model towards predicting a label
and blue tokens push it away from predicting that label. In
our plot, we see that our model finds the SHAP values for
the three classes of no finding, pleural effusion, and frac-
ture. From this text ”Severe cardiomegaly is unchanged as
well as bilateral pleural effusions. There is no pneumotho-
rax. Mild vascular congestion is re- demonstrated with no
substantial change since the prior study”, we can see that
the word "no” is important in pushing the model to classify
the text as no finding. Nextly, the words pleural effusion”
are pushing the model to classifying it as such. From this,
we can see how these SHAP values allow us to understand
which words are important in making a decision as well as
not making a decision. Therefore, from both of these inter-
pretability values, we can see that the model is focusing on
clinically relevant features in both modalities which allows
us to put a lot more trust into the diagnostic predictions.

As explained, the model does begin to overfit when we
train on more than 10 epochs but it does seem that 10 is the
number where we maximize the validation and test accuracy
before overfitting begins. This could be because there is not
enough training data to allow for improved performance as
the model is not seeing enough information from the 10850
images and texts. A remedy to this will be elaborated in our
conclusion.

Epoch [10/10] | Train Loss: 0.2877, Train Acc: 0.7648 | Val Loss: 0.4436, Val Acc: 0.7047

Training vs Validation Loss Training vs Validation Accuracy
— Train Loss — Train Accuracy
val Accuracy
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Figure 6. Loss and Accuracy Curves for Image-Only Model



Epoch [10/10] | Train Loss: 0.1362, Train Acc: 0.8296 | Val Loss: 0.2707, Val Acc: 0.7916
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Figure 7. Loss and Accuracy Curves for Multimodal Model
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Figure 8. Original X-ray Image and GradCAM Heatmaps
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Figure 9. SHAP Values for No Finding
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Figure 10. SHAP Values for Pleural Effusion
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Figure 11. SHAP Values for Fracture

5. Conclusion

In this project, we developed an interpretable deep learn-
ing model for multilabel classification of chest X-ray im-
ages and radiology reports from the MIMIC-CXR dataset.
To tackle this problem, we implemented three models:
a text-only model using a pretrained BiomedVLP CXR-
BERT encoder, an image-only model using a fine-tuned
ResNet-18 model, and a multimodal model that fused both
image and text embeddings using a late fusion method. Ad-
ditionally, using Grad-CAM and SHAP value methods, we
were able to get a glimpse into why our multimodal model
made the decisions it did, making it more interpretable.

From the three architectures, the multimodal model
achieved the best performance, with an accuracy of 79.5%
compared to the CNN model’s performance of 70.47%.
This performance improvement highlights the usefulness
of multimodal data and multimodal models and highlights
the complementary nature of radiology reports and imag-
ing data as X-rays provide spatial evidence while textual re-
ports often contain nuanced clinical summaries which work
together to provide more context for our multimodal model
that unimodal models might not catch.

For future works, I would attempt to improve the model
by trying different fusion strategies such as early and hy-
brid methods to test which strategies are best in improv-
ing model performance. Additionally, I would train on the
full dataset of 377,000 data points rather than our 10850
which is a very small subsample. This would hopefully im-
prove model generalization and allow the network to better
capture less common patterns present in underrepresented
classes. Outside of model improvement, I would want to
use clincian/radiologist feedback to validate interpretabil-
ity outputs to make sure that they hold clinical importance.
With these next steps on this project, we can go one step
further in making transparent Al-assisted medical diagnosis
tools a reality.
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